коцепь



  1. Коцепь

    Однородный элемент коцепнои абелевои группы С* (или, в общем случае, модуля), т. е. градуированной абелевой группы, снабженной эндоморфизмом d степени +1, обладающим свойством dd=0 Эндоморфизм d наз. кограничным отображением, или кограницей.


    Математическая энциклопедия




  2. Бемольная Форма

    пересечения множества Мс нек-рой s-мерной плоскостью. Если Xесть r-мерная бемольная коцепь в Л, то существует

    и причем где — комасса коцепи X. Обратно, любой г-мерной Б. ф. в соответствует но формуле (1

    единственная r-мерная бемольная коцепь для любого симплекса , удовлетворяющего вышеуказанному условию, причем

    Форма и коцепь Xназ. ассоциированным и. Формы, ассоциированные с одной и той же коцепью

    бемольными коцепями Xи классами эквивалентных измеримых ограниченных функций существует взаимно однозначное


    Математическая энциклопедия




  3. Диезная Форма

    Уитни. Каждой r-мерной диезной коцепи Xв Rсоответствует единственная r-мерная Д. ф. sX, для которой

    к-рых Это соответствие является взаимно однозначным линейным отображением пространства коцепей

    банаховым пространством. В частности, нульмерным диезным коцепям соответствуют диезные функции

    являются r-векторы g, наделенному диезной нормой это соответствие определяется формулой: для любой коцепи

    X, где wX есть r-мерная Д. ф., соответствующая коцепи X, и имеет место: gA( Е п)= , т. е. ковектору


    Математическая энциклопедия




  4. Коцикл

    Коцепь, аннулируемая кограничным отображением, другими словами, коцепь, обращающаяся в нуль

    коцепи имеются различные варианты понятия К. Напр., К. в смысле Александрова — Чеха топологич


    Математическая энциклопедия




  5. Диезная Норма

    ], с. 242, пример (с)); r-мерная диезная коцепь Х=ХА есть элемент пространства сопряженного

    к она является бемольной коцепью, причем где |Х| — ко масса X, а диезная конорма определяется аналогично

    бемольной норме | Х|b. Кограница dX диезной коцепи не обязана быть диезной ([1], с. 241, пример

    а)), однако Константа Липшица коцепи Xопределяется следующим образом: где А — полиэдральные цепи

    Для диезных коцепей эта верхняя грань конечна и Любая бемольная коцепь с конечной константой Липшица


    Математическая энциклопедия




  6. Фундаментальный Коцикл

    Клеточного пространства Xтакого, что (n — 1)-остов Х n-1 является точкой х 0,-коцепь из значение


    Математическая энциклопедия




  7. Различающая

    Sn есть n-мерная сфера) и, значит, элемент группы pn(Y). Таким образом возникает коцепь

    более точным было бы обозначение ), к-рая и наз. различающей коцепью; коцепь dn(f, g).является препятствием

    тогда и только тогда, когда гомотопия между fи gпродолжается на Xn;2) коцепь является коциклом; 3) класс когомологий

    dn(f, g)+dn(g, h) =dn(f, h); 3) для любого отображения f : и любой коцепи ) существует такое


    Математическая энциклопедия




  8. Бемольная Норма

    наибольшую из полунорм удовлетворяющую для любой клетки неравенствам: г-мерная бемольная коцепь X

    мерной бемольной коцепи Xопределяется стандартным образом: так что причем Для кограницы бемольной

    коцепи (определяемой условием: так что Аналогичные понятия вводятся для полиэдральных r-мерных цепей


    Математическая энциклопедия




  9. Масса И Комасса

    Диезная норма )дают одно и то же значение массы. 3) К о м а с с а (бемольной, в частности диезной) коцепи

    Xопределяется стандартным образом: где А — полиэдральная цепь, — значение коцепи Xна цепи А. Лит. см. при ст. Бемольная норма. М. И. Войцеховский.


    Математическая энциклопедия




  10. Постникова Квадрат

    а — свободная абелева группа. Для 1-коциклов П. к. определен формулой где — такая коцепь с коэффициентами


    Математическая энциклопедия




  11. Относительные Гомологии

    комплекса цепей X, состоящим из всех коцепей с носителями в , в то время как фактор-комплекс обычно


    Математическая энциклопедия




  12. Колмогорова Двойственность

    абелевой группой. Для определения коцепей рассматриваются такие кососимметрические функции f(x0, х 1

    как только все х i принадлежат U, и за коцепь принимается класс эквивалентных функций. Кограница коцепи

    определяется как класс кограниц входящих в эту коцепь функций. Коцикл есть коцепь с r с нулевой кограницей

    соответственно гомологии) бесконечных коцепей (соответственно конечных цепей) произвольного клеточного


    Математическая энциклопедия




  13. Стинрода Квадрат

    здесь обозначен наименьший подкомплекс цепного комплекса содержащий элемент Пусть Любым двум коцепям ставится

    в соответствие формулой для любого симплекса коцепь наз. их -произведением. Для кограницы

    этой коцепи имеет место формула из к-рой следует, что формула корректно определяет нек-рый гомоморфизм к-рый


    Математическая энциклопедия




  14. Фундаментальный Класс

    эти клетки образуют базис группы С п(X), тем самым определена n-мерная коцепь из Эта коцепь является


    Математическая энциклопедия




  15. Пучков Теория

    для решения конкретных задач. Напр., когомологии Александрова — Чеха можно определить с помощью коцепей

    получающихся из коцепей специально подобранной системы открытых покрытий переходом к прямому пределу

    Эти коцепи оказываются сечениями пучков ростков коцепей (определяемых аналогично пучкам ростков

    для алгебраич. многообразий). Сечениями пучков резольвенты оказываются и коцепи Алек-сандера

    когомологии отождествление коцепей, совпадающих друг с другом на сингулярных симплексах мелкости


    Математическая энциклопедия




  16. Сингулярные Гомологии

    компактных . Сингулярные когомологии определяются дуальным образом. Комплекс коцепей S*(X; G).определяется

    коцепи — это функции x, определенные на сингулярных симплексах и принимающие значения в G, а пограничный

    из всех коцепей, обращающихся в нуль на сингулярных симплексах из А. Имеет место точная


    Математическая энциклопедия




  17. Препятствие

    возникает коцепь Так как для , очевидно, , то на самом деле Очевидно, тогда и только тогда, когда f

    продолжается на Х n+1, т. е. коцепь является препятствием к продолжению f на Х п + 1. Коцепь является


    Математическая энциклопедия




  18. Когомологии

    мерной коцепью покрытия наз. отображение f, к-рое всякому упорядоченному набору такому

    что сопоставляет сечение fi0...in пучка Fнад Ui0...in . Множество всех re-мерных коцепей является абелевой

    его подкомплексом, состоящим из альтернированных коцепей, т. е. коцепей, меняющих знак при перестановке

    коцепей класса См. также групп, Эквиеариаптные когомологии. Лит.:[1]Гротендик А., О некоторых вопросах


    Математическая энциклопедия




  19. Симплициальное Множество

    группа) E(p, п), симплексами размерности qк-рого являются re-мерные коцепи q-мерного геометрического

    гомоморфизмы групп коцепей являются, по определению, операторами граней и вырождения С. м. Е(p, п


    Математическая энциклопедия




  20. Гомотопический Тип

    относительно его, стандартной триангуляции) и пусть — группа его n-мерных коцепей над абслевой группой

    точнее, группа нормализованных n-мерных коцепей симплициального множества ). Пусть — симплициальное

    множество, в к-ром симплексами размерности qявляются коцепи из , а операторы грани и вырождения

    симплициального множества над группой в группе коцепей этого множества над группой определен кограничный

    симплекс . Сопоставление этой грани элемента приводит к некоторой -мерной коцепи


    Математическая энциклопедия




  21. Когомологий Алгебр Ли

    дифференциальной формы. Точнее, комплекс де Рама есть подкомплекс в состоящий из коцепей, линейных над F(M

    ], [14]). Алгебра когомологии редуктивной алгебры Ли естественно изоморфна алгебре коцепей

    коцепей [10]. С другой стороны, пусть — алгебра Ли односвязной разрешимой группы Ли G, Г — решетка в Gи


    Математическая энциклопедия




  22. Александрова — Чеха Гомологии И Кого-мологии

    предельного коцепного комплекса, что дает возможность оперировать пучками коцепей. Аналогичные идеи


    Математическая энциклопедия




  23. Комплекс

    При их определении исходной является опять же группа цепей, называемая в этом случае группой коцепей

    Аналогично строится теория когомологии. Группа С r( К, L; G)r-мерных бесконечных коцепей К. Кпо модулю

    подкомплекса Lнад Gявляется множеством всех таких r-мерных коцепей с r К. К, к-рые равны нулю

    последовательность порожденная вложениями В классе когомологии произвольный коцикл распространяется до коцепи

    произвольно, когда tr не принадлежит подкомплексу LК. К. Кограница drzr1 получающейся коцепи равна


    Математическая энциклопедия




  24. Когомологий Групп

    то можно рассмотреть когомологии группы Gс коэффициентами в А, вычисляемые в терминах непрерывных коцепей [5


    Математическая энциклопедия




  25. Гомологии Группа

    Alexander) независимо было дано построение групп когомологии, основанное на коцепях, являющихся функциями


    Математическая энциклопедия




  26. Дифференциальная Топология

    форм над коцепями с инволюцией были получены глубокие результаты методами функционального анализа


    Математическая энциклопедия




  27. Галуа Когомологии

    а за коцепи берутся непрерывные отображения. Для неабелевой группы Мсодержательно определяются


    Математическая энциклопедия




  28. Аналитическое Пространство

    трудностями, и часто приходится задавать классы когомологии другими способами, напр., с помощью коцепей


    Математическая энциклопедия




  29. Двойственность

    мерной коцепи Gr комплекса Кнад группой X* коэффициентов, двойственной Xв смысле теории характеров

    значения из дискретной или компактной группы Xкоэффициентов (п- р)-мерную коцепь с n-p клеточного


    Математическая энциклопедия




  30. Топология

    К. Аналогичная конструкция, в которой исходят не из цепей, а из коцепей (произвольных функций


    Большая советская энциклопедия





  1. коцепь
    Геом. cochain

    Полный русско-английский словарь




  2. когомологическая коцепь
    Мат. cohomologous cochain

    Полный русско-английский словарь




  3. алгебраическая коцепь
    Мат. algebraic cochain

    Полный русско-английский словарь




  4. бемольная коцепь
    Мат. flat cochain

    Полный русско-английский словарь




  5. целочисленная коцепь
    Мат. integral cochain

    Полный русско-английский словарь




  6. элементарная коцепь
    Мат. elementary cochain

    Полный русско-английский словарь




  7. группа коцепей
    Мат. cochain group

    Полный русско-английский словарь




  8. полудиезная коцепь
    Мат. semisharp cochain

    Полный русско-английский словарь




  9. различающая коцепь
    Мат. discrimitating cochain

    Полный русско-английский словарь




  10. непрерывная коцепь
    Мат. continuous cochain

    Полный русско-английский словарь




  11. нормализованная коцепь
    Мат. normalized cochain

    Полный русско-английский словарь




  12. диезная коцепь
    Мат. sharp cochain

    Полный русско-английский словарь




  13. клеточная коцепь
    Мат. cellular cochain

    Полный русско-английский словарь




  14. разностная коцепь
    Мат. difference cochain

    Полный русско-английский словарь




  15. сингулярная коцепь
    Мат. singular cochain

    Полный русско-английский словарь




  16. ненормализованная коцепь
    Мат. unnormalized cochain

    Полный русско-английский словарь




  17. cochain
    Коцепь


    Англо-русский морской словарь




  18. discrimitating cochain
    Мат. различающая коцепь


    Полный англо-русский словарь




  19. continuous cochain
    Мат. непрерывная коцепь


    Полный англо-русский словарь




  20. difference cochain
    Мат. разностная коцепь


    Полный англо-русский словарь




  21. cohomologous cochain
    Мат. когомологическая коцепь


    Полный англо-русский словарь




  22. unnormalized cochain
    Мат. ненормализованная коцепь


    Полный англо-русский словарь




  23. commutative cochain
    Мат. коммутативная коцепь


    Полный англо-русский словарь




  24. cellular cochain
    Мат. клеточная коцепь


    Полный англо-русский словарь




  25. singular cochain
    Мат. сингулярная коцепь


    Полный англо-русский словарь




  26. cochain group
    Мат. группа коцепей


    Полный англо-русский словарь




  27. normalized cochain
    Мат. нормализованная коцепь


    Полный англо-русский словарь




  28. semisharp cochain
    Мат. полудиезная коцепь


    Полный англо-русский словарь




  29. flat cochain
    Мат. бемольная коцепь


    Полный англо-русский словарь




  30. finite cochain
    Мат. конечная коцепь


    Полный англо-русский словарь




  31. algebraic cochain
    Мат. алгебраическая коцепь


    Полный англо-русский словарь




  32. sharp cochain
    Мат. диезная коцепь


    Полный англо-русский словарь




  33. integral cochain
    Мат. целочисленная коцепь


    Полный англо-русский словарь




  34. cochain
    Геом. коцепь globally finite cochain — глобально конечная коцепь locally finite cochain — локально

    конечная коцепь — algebraic cochain — cellular cochain — cochain complex — cochain group — cochain

    Полный англо-русский словарь



№2 (2386)№2 (2386)№3 (2383)№3 (2383)№4 (2359)№5 (2354)№6 (2318)№7 (2316)№8 (2314)№9 (2310)№9 (2310)№10 (2302)